문제

Q4.svg


해설

Step 1. f(x)f(x) 구하기


0x{f(t)}2dt=ln1+cosf(x)lnsinf(x)  (가)\displaystyle\int_{\,0}^{\,x} \left\{ f^{\prime}(t) \right\}^{2}dt=\ln \big\lvert\, 1+\cos f(x) \,\big\rvert-\ln \big\lvert\, \sin f(x) \,\big\rvert \;\cdots \textrm{(가)}

{f(x)}2={sinf(x)1+cosf(x)cosf(x)sinf(x)}f(x)\left\{ f^{\prime}(x) \right\}^{2}=\left\{ \dfrac{-\sin f(x)}{1+\cos f(x)} - \dfrac{\cos f(x)}{\sin f(x)} \right\} \cdot f^{\prime}(x)

f(x)=sin2f(x)+cosf(x)+cos2f(x){1+cosf(x)}sinf(x)=1+cosf(x){1+cosf(x)}sinf(x)=1sinf(x)\begin{aligned} f^{\prime}(x)&= -\dfrac{\sin^{2} f(x) + \cos f(x) + \cos^{2} f(x)}{\left\{1+\cos f(x) \right\} \cdot \sin f(x)} \\ &= -\dfrac{1 + \cos f(x)}{\left\{1+\cos f(x) \right\} \cdot \sin f(x)} \\ &= -\dfrac{1}{\sin f(x)}\end{aligned}

f(x)sinf(x)=1f^{\prime}(x) \cdot \sin f(x) = -1

cosf(x)=x+C\cos f(x) = x + C (CC 는 적분상수)

(가)에 x=0x=0 을 대입하면 0=ln1+cosf(0)sinf(0)0=\ln \bigg\lvert\,\dfrac{1+\cos f(0)}{\sin f(0)}\,\bigg\rvert

1+cosf(0)=sinf(0)\therefore 1 + \cos f(0) = \sin f(0) 또는 1+cosf(0)=sinf(0)1 + \cos f(0) = -\sin f(0)

어느 경우든 간에 {1+cosf(0)}2={sinf(0)}2\left\{1 + \cos f(0)\right\}^{2}=\left\{\sin f(0) \right\}^{2} 이다.

그러므로 {sinf(0)}2+{cosf(0)}2=1\left\{\sin f(0) \right\}^{2} + \left\{\cos f(0) \right\}^{2} = 1 에서

{1+cosf(0)}2+{cosf(0)}2=1\left\{1 + \cos f(0) \right\}^{2} + \left\{\cos f(0) \right\}^{2} = 1

2{cosf(0)}2+2cosf(0)=02 \left\{\cos f(0) \right\}^{2} + 2 \cos f(0) = 0

cosf(0)=0\cos f(0) = 0 또는 cosf(0)=1\cos f(0) = -1

문제 조건에서 ff 의 공역이 (0,π)(0, \pi) 이기 때문에, cosf(0)1\cos f(0) \neq -1 이다. 따라서 cosf(0)=0\cos f(0) = 0 이고, C=0C=0 이다.

cosf(x)=x\therefore \cos f(x) = x


Step 2. g(x)g(x) 구하기

π22ysinzdz=[cosz]π22y=cos2y\displaystyle\int _{\,\frac{\pi}{2}}^{\,2y}\sin z \: \mathrm{d}z = \bigg[-\cos z \,\bigg]_{\frac{\pi}{2}}^{2y} = -\cos 2y

0w2cos2ydy=[12sin2y]0w2=12sinw\displaystyle\int _{\,0}^{\,\frac{w}{2}}-\cos 2y \: \mathrm{d}y = \left[\,-\dfrac{1}{2}\sin 2y \,\right]_{0}^{\frac{w}{2}} = -\dfrac{1}{2} \sin w

vf(x)12sinwdw=[12cosw]vf(x)=12{cosf(x)cosv}=12(xcosv)\displaystyle\int _{\,v}^{\,f(x)}-\dfrac{1}{2} \sin w \: \mathrm{d}w = \left[\,\dfrac{1}{2}\cos w \,\right]_{v}^{f(x)} = \dfrac{1}{2} \left\{\cos f(x) - \cos v \right\}=\dfrac{1}{2} \left(x - \cos v \right)

0u212(xcosv)dv=[sinv12xv]0u2=12{sin(u2)xu2}\displaystyle\int _{\,0}^{\,u^2}\dfrac{1}{2} \left(x - \cos v \right) \mathrm{d}v = \left[\,\sin v - \dfrac{1}{2} xv\,\right]_{0}^{u^2}=\dfrac{1}{2} \left\{\sin(u^2) - xu^2\right\}

h(t)=πt{sin(u2)xu2}duh(t)=\displaystyle\int _{\sqrt{\pi}} ^{\,t} \left\{\sin\left(u^2\right) - xu^2\right\}\mathrm{d}u 라 하자.

h(t)=xt2+sin(t2)h^{\prime}(t)=-x t^{2} + \sin \left(t ^2 \right)

0th(s)ds=[sh(s)]0t0tsh(s)ds=th(t)0ts{xs2+sin(s2)}ds\begin{aligned} \displaystyle\int_{\,0}^{\,t} h(s) \: \mathrm{d}s &= \bigg[\,sh(s)\,\bigg]_{0}^{t} - \displaystyle\int_{\,0}^{\,t} s h^{\prime}(s) \: \mathrm{d}s \\ &= th(t) - \displaystyle\int_{\,0}^{\,t}s \cdot \left\{ -xs^2 + \sin\left(s^2\right)\right\}\, \mathrm{d} s \end{aligned}

k=s2k=s^2 라 하면 dk=2sds\mathrm{d} k = 2s\: \mathrm{d} s

0th(s)ds=th(t)120t2(xk+sink)dk=th(t)12[x2v2cosv]0t2=th(t)12{x2t4cos(t2)+1}\begin{aligned} \displaystyle\int_{\,0}^{\,t} h(s) \: \mathrm{d}s &= th(t) - \dfrac{1}{2}\displaystyle\int_{\,0}^{\,t^2}\left(-xk + \sin k \right)\, \mathrm{d}k \\ &= th(t) - \dfrac{1}{2} \bigg[-\dfrac{x}{2}v^{2} - \cos v \,\bigg]_{0}^{t^2} \\ &= th(t) - \dfrac{1}{2} \left\{-\dfrac{x}{2} t^{4} - \cos \left( t^2 \right) + 1 \right\}\end{aligned}

g(x)=limt0120th(s)ds12h(t)sint=limt0th(t)12{x2t4cos(t2)+1}sinth(t)=limt0tsint+14limt0xt4sinth(t)12limt01cos(t2)sinth(t)=1+14limt0(x1)t3h(t)\begin{aligned} g(x)&=\lim\limits_{t\rightarrow0}\dfrac{\dfrac{1}{2}\displaystyle\int_{\,0}^{\,t}{h(s) \: \mathrm{d} s}}{\dfrac{1}{2}\,h(t) \sin t} \\ &= \lim\limits_{t\rightarrow0}\dfrac{th(t) - \dfrac{1}{2} \left\{-\dfrac{x}{2} t^4 - \cos \left(t^2 \right) + 1 \right\}}{\sin t \cdot h(t)} \\ &= \lim\limits_{t\rightarrow0}\dfrac{t}{\sin t} + \dfrac{1}{4} \lim\limits_{t\rightarrow0}\dfrac{xt^4}{\sin t \cdot h(t)}-\dfrac{1}{2} \lim\limits_{t\rightarrow0}\dfrac{1-\cos\left(t^2\right)}{\sin t \cdot h(t)} \\ &= 1 + \dfrac{1}{4} \lim\limits_{t \rightarrow 0}\dfrac{(x-1) t^3}{h(t)}\end{aligned}


Step 3. 답 구하기

(ⅰ) xxh(0)=0h(0) = 0 을 만족할 때

i(t)=(x1)t3i(t) = (x-1)t^3 로 두면, i(t)=3(x1)t2i^{\prime}(t) = 3(x-1)t^2 이므로

limt0i(t)h(t)=limt0i(t)i(0)th(t)h(0)t=limt0i(t)h(t)=limt03(x1)t2xt2+sin(t2)=3\lim\limits_{t \rightarrow 0} \dfrac{i(t)}{h(t)} = \lim\limits_{t \rightarrow 0}\cfrac{\frac{i(t)-i(0)}{t}}{\frac{h(t)-h(0)}{t}}= \lim\limits_{t \rightarrow 0} \dfrac{i^{\prime}(t)}{h^{\prime}(t)} = \lim\limits_{t \rightarrow 0} \dfrac{3(x-1)t^2}{-x t^{2} + \sin \left(t ^2 \right)}=-3

g(x)=134=14g(x)=1-\dfrac{3}{4}=\dfrac{1}{4}

h(0)=π0{sin(l2)xl2}dl=[x3l3]0π20πsin(l2)dl=0\begin{aligned} h(0)&=\displaystyle\int _{\sqrt{\pi}} ^{\,0} \left\{\sin\left(l^2\right) - xl^2\right\}\mathrm{d}l \\ &= \bigg[ -\dfrac{x}{3} l^{3} \, \bigg] _{0}^{\sqrt{\pi}} - 2 \displaystyle\int_{\,0}^{\,\sqrt{\pi}} \sin \left( l^2 \right) \mathrm{d} l = 0\end{aligned}

0πsin(l2)dl=x6ππ\displaystyle\int_{\,0}^{\,\sqrt{\pi}} \sin \left( l^2 \right) \mathrm{d} l = - \dfrac{x}{6} \pi \sqrt{\pi}

0πsin(l2)dl\displaystyle\int_{\,0}^{\,\sqrt{\pi}} \sin \left( l^2 \right) \mathrm{d} l 은 상수이므로, 위 식을 만족시키는 xxα\alpha 로 유일하다.

(다시 말해 g(m)=14=kg(m)=\dfrac{1}{4} = k 를 만족하는 mmα=60πsin(l2)dlππ\alpha = -\dfrac{6\int_{0}^{\sqrt{\pi}} \sin \left( l^2 \right) \mathrm{d} l}{\pi \sqrt{\pi}} 로 유일하다.)

l=tl=\sqrt{t} 라 하면 dt=2ldl\mathrm{d} t = 2l \: \mathrm{d} l 이므로,

0πsinttdt=0πsin(l2)l2ldl=20πsin(l2)dl=x3π32\displaystyle\int_{\,0}^{\,\pi}\dfrac{\sin t}{\sqrt t} \: \mathrm{d} t = \displaystyle\int_{\,0}^{\,\sqrt{\pi}}\dfrac{\sin \left(l^2 \right)}{l} \cdot 2l \: \mathrm{d} l = 2 \displaystyle\int_{\,0}^{\,\sqrt{\pi}}\sin \left(l^2 \right)\mathrm{d} l = -\dfrac{x}{3} \pi^{\frac{3}{2}}

pk=3pk=3 이므로 p=12p=12, q=2q=2, r=3r=3

p×(q+r)=60\therefore p \times (q + r) = 60


(ⅱ) xxh(0)0h(0) \neq 0 을 만족할 때

limt0(x1)t3h(t)=0\lim\limits_{t \rightarrow 0}\dfrac{(x-1) t^3}{h(t)} = 0 이므로 g(x)=1g(x)=1 이다. 그런데 앞에서 h(0)=0h(0) = 0 을 만족하는 xx 는 단 한 개임을 보였으므로, h(0)0h(0) \neq 0 을 만족하는 xx 는 무수히 많다. 고로 이 경우에서 g(m)=1g(m)=1 을 만족하는 mmα\alpha ‘뿐’인 경우는 없다.


정답

60


Comment

문제의 생김새에 비해서는 깔끔하게 풀린다고 볼 수 있을 것 같다. 식을 잘 정리하고 관찰하면 풀리기 때문에 가형 킬러보다는 다소 쉬운 난이도라고 할 수 있을 것 같다.


History

  • 최초 출제일: 2022.08.14.
  • 해설 작성일: 2022.08.14.
  • 웹 업로드일: 2023.02.07.